Sums of Triangular Numbers from the Frobenius Determinant

نویسنده

  • HJALMAR ROSENGREN
چکیده

Abstract. We show that the denominator formula for the strange series of affine superalgebras, conjectured by Kac and Wakimoto and proved by Zagier, follows from a classical determinant evaluation of Frobenius. As a limit case, we obtain exact formulas for the number of representations of an arbitrary number as a sum of 4m2/d triangles, whenever d | 2m, and 4m(m + 1)/d triangles, when d | 2m or d | 2m + 2. This extends recent results of Getz and Mahlburg, Milne, and Zagier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRIANGULAR FUZZY MATRICES

In this paper, some elementary operations on triangular fuzzynumbers (TFNs) are defined. We also define some operations on triangularfuzzy matrices (TFMs) such as trace and triangular fuzzy determinant(TFD). Using elementary operations, some important properties of TFMs arepresented. The concept of adjoints on TFM is discussed and some of theirproperties are. Some special types of TFMs (e.g. pu...

متن کامل

Twisted Dedekind Type Sums Associated with Barnes’ Type Multiple Frobenius-Euler l-Functions

The aim of this paper is to construct new Dedekind type sums. We construct generating functions of Barnes’ type multiple FrobeniusEuler numbers and polynomials. By applying Mellin transformation to these functions, we define Barnes’ type multiple l-functions, which interpolate Frobenius-Euler numbers at negative integers. By using generalizations of the Frobenius-Euler functions, we define gene...

متن کامل

Representing Sets with Sums of Triangular Numbers

We investigate here sums of triangular numbers f(x) := ∑

متن کامل

Alternate Sylvester sums on the Frobenius set

The alternate Sylvester sums are Tm(a, b) = ∑ n∈NR(−1)n, where a and b are coprime, positive integers, and NR is the Frobenius set associated with a and b. In this note, we study the generating functions, recurrences and explicit expressions of the alternate Sylvester sums. It can be found that the results are closely related to the Bernoulli polynomials, the Euler polynomials, and the (alterna...

متن کامل

On the structural properties for the cross product of fuzzy numbers with applications

In the fuzzy arithmetic, the definitions of addition and multiplication of fuzzy numbers are based on Zadeh’s extension principle. From theoretical and practical points of view, this multiplication of fuzzy numbers owns several unnatural properties. Recently, to avoid this shortcoming, a new multiplicative operation of product type is introduced, the so-called cross-product of fuzzy numbers. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008